RemoDAQ-8080 族模块

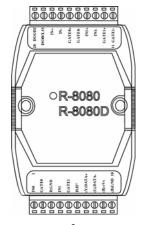
用户手册

北京集智达智能科技有限责任公司

目 录

1	概述	3
	1.1 端子分布	3
	1.2 规格	4
	1.3 结构图	6
	1.4 应用接线图	7
	1.4.1 开关量输出	7
	1.4.2 计数或频率	7
	1.5 默认设置	8
	1.6 应用注解	8
	1.6.1 计数器/频率输入方式选择	8
	1.6.2 计数器报警方式选择	8
	1.6.3 数字输出应用注解	10
	1.6.4 门控设置	10
	1.6.5 频率输入应用	.11
	1.6.6 计数器输入应用	.11
	1.7 列表	12
2	命令	13
	2.1 % AANNTTCCFF	15
	2.2 #AAN	16
	2.3 ~**	17
	2.4 ~AAO	18
	2.5 ~AA1	19
	2.6~AA2	20
	2.7 ~AA3ETT	21
	2.8 ~AAAS	22
	2.9 ~AAB	23
	2.10~AAO(名称)	24
	2.11 \$AA2	25
	2.12 \$AA6N	27
	2.13 \$AA7N	28

RemoDAQ-8080 族模块用户手册


	2.14 \$AAA	29
	2.15 \$AAAG	30
	2.16 \$AAB	31
	2.17 \$AABS	32
	2.18 \$AAF	33
	2.19 \$AAM	34
	2.20 @ AADI	35
	2.21 @AADO0D	37
	2.22 @ AAEAN	39
	2.23 @ AAEAT	
	2.24 @ AACA	41
	2.25 @ AADA	
	2.26 @ AADAN	
	2.27 @AAPA(数据)	
	2.28 @AAPA(数据)	
	2.29 @AASA(数据)	
	2.30 @AASA(数据)	
	2.31 @ AARP	
	2.32 @ AARP	
	2.33 @ AARA	
	2.34 @ AARA	51
3	应用注释	
	3.1 INIT* 端子操作原理	
	3.2 D/O操作原理	52

1 概述

RemoDAQ-8000 系列是基于 RS-485 网络的数据采集和控制模块。它们提供了模拟量输入、模拟量输出、数字量输入/输出、定时器/计数器、交流电量采集、无线通讯等功能。这些模块可以由命令远程控制。RemoDAQ-8080/8080D特性如下:

- 2个单独的32位计数器,计数器0和计数器1
- 输入模式:隔离或非隔离
- 可编程的报警输出
- 最大输入频率: 100KHz
- 5位 LED 显示 (RemoDAQ-8080D)

1.1 端子分布

1.2 规格

RemoDAQ-8080: 计数器/频率模块

RemoDAQ-8080D: 带有 LED 显示的计数器/频率模块

计数器输入:

- 通道: 2路独立的32位计数器,计数器0和计数器1
- 输入模式:隔离或非隔离
- 隔离输入电平 逻辑电平 0: +1Vmax 逻辑电平 1: +3.5V~30V
- 隔离电压: 3750V
- 非隔离输入电平: 逻辑电平 0: 0 到+1V (缺省 0.8V) 逻辑电平 1: 3.5 到+5V (缺省 2.4V)
- 最大计数: 32 位(4, 294, 967, 295)
- 在计数器 0 或在计数器 0 和 1 上可设报警上下限值

显示

● LED 显示: 5 位,通道 0 或通道 1

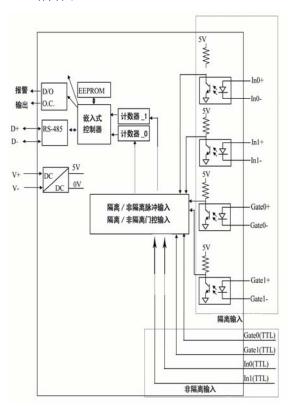
频率测量

- 輸入频率: 1Hz~100K Hz
- 可编程的内置选通时间: 1.0/0.1 秒

开关量输出

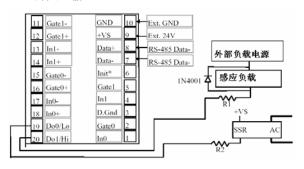
- 2 通道集电极开路输出 30V,最大负载 30mA
- 功耗: 300mW

电源


● 输入: +10V~30V

● 功耗: 2W (RemoDAQ-8080)

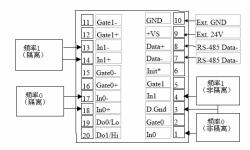
2.2W (RemoDAQ-8080D)


温度: -20℃ ~70℃; 湿度: 5%~90%, 无凝露

1.3 结构图

1.4 应用接线图

1.4.1 开关量输出



注意:

- 1. 如果是阻性负载,1N4001 可省略
- 如果是外部负载,1N4001 不可省略

1.4.2 计数或频率

用\$AABS 命令来选择隔离/非隔离输入

1.5 默认设置

● 地址: 01

被特率: 9600bps

● 禁止校验

● 数据: 1(开始)+8(数据)+1(停止,无奇偶)

● 类型: 50 (计数器输入)

● 报警: 计数器 0 和计数器 1 高限报警

1.6 应用注解

1.6.1 计数器/频率输入方式选择

计数器/频率输入方式分为隔离和非隔离型的,通道 0 和通道 1 是独立的, RemoDAQ-8080/8080D 有 4 种不同的输入方式

输入方式	命令	通道 0	通道1
方式 0	\$AAB0	非隔离	非隔离
方式 1	\$AAB1	隔离	隔离
方式 2	\$AAB2	非隔离	隔离
方式3	\$AAB3	隔离	非隔离

1.6.2 计数器报警方式选择

RemoDAQ-8080/8080D 计数器报警方式有 2 种,报 警方式 0 和报警方式 1

报警方式 0:

- 选择方式 0: ~AAA0 (所有通道)
- 允许通道 0: @AAEA0
- 禁止通道 0; @AADA0
- 设置通道 0 上限报警: @AAPA(数据)
- 当计数器 0>=报警上限 0,则 D/O 0= 开
- 当计数器 0<报警上限 0,则 D/O 0= 关
- 允许通道 1: @AAEA1
- 禁止通道 1: @AADA1
- 设置通道 1 上限报警: @AASA (数据)
- 当计数器 1>=报警极限 1,则 D/O 1=开
- 当计数器 1<报警极限 1,则 D/O 1=关

报警方式1:

- 选择方式 1: ~AAA1 (通道 0)
- ◆ 允许通道 0: @AAEAT
- 禁止通道 0: @AADA
- 清除锁存报警: @AACA
- 设置上限报警: @AAPA(数据)
- 设置上上限报警:@AASA(数据)

	D/O 0	D/O 1
计数器 0<上限报警	关	关
上限报警<=计数器0&	开	关
计数器 0<上上限报警	21	大
上上限报警<=计数器 0	开	开

1.6.3 数字输出应用注解

D/O0 和 D/O1 可当作 D/O 或者是报警输出

- 在频率方式中被用作 D/O
- 在计数器方式和报警禁止中被用作 D/O (@AADA 或@AADAN 命令)
- 在计数器方式和报警允许中可当作报警输出

	D/O0	D/O1	
频率方式	D/O0	D/O1	
计数器方式和报警禁止	D/O0	D/O1	
计数器方式和报警允许	计数器 0 的上限	计数器 0 的上上	
(报警方式 1, ~AAA1)	报警	限报警	
计数器方式和报警允许 (报警方式 0,~AAA0、	计数器 0 的报警	D/O1 或计数器 1 的报警	
@AAEA0)		1 11111	
计数器方式和报警允许 (报警方式 0,~AAA0、 @AAEA1)	计数器 0 的 D/O 或报警	计数器 1 的报警	

1.6.4 门控设置

在频率方式(51)中门控是被忽略的,在计数器方式(50)中是默认的,用户可以用命令来允许/禁止该门控:

- \$AAA0: 门控输入是低电平时, 计数器有效
- \$AAA1: 门控输入是高电平时, 计数器有效
- \$AAA2: 门控输入被忽略, 计数器始终有效

1.6.5 频率输入应用

Type=51

	频率 0	频率 1
\$AAB0→输入方式 0	非隔离通道 0	非隔离通道1
\$AAB1→输入方式 1	隔离通道 0	隔离通道1
\$AAB2→输入方式 2	非隔离通道 0	隔离通道1
\$AAB3→输入方式 3	隔离通道 0	非隔离通道1

- 1. 命令\$AABS 选择方式(这个命令将首先清除当前的 频率)
- 2. 命令#AAN 进行频率测量

1.6.6 计数器输入应用

Type=50

	计数器 0	计数器1
\$AAB0→输入方式 0	非隔离通道0	非隔离通道1
\$AAB1→输入方式 1	隔离通道 0	隔离通道1
\$AAB2→输入方式 2	非隔离通道0	隔离通道1
\$AAB3→输入方式 3	隔离通道 0	非隔离通道1

1.7 列表

波特率设定 (CC)

#	****							
代码	03	04	05	06	07	08	09	0A
波特率	1200	2400	4800	9600	19200	38400	57600	115200

数据格式设置 (FF)

7	6	5	4	3	2	1	0
0	*1	0		*2	()	

^{*1} 校验和 0=禁止 1=允许

类型设置(TT)

代码	名称
50	计数器
51	频率

^{*2} 频率时间 0=0.1 秒 1=1.0 秒

2 命令

通 用 命 令 集						
命令	回答	说 明	备注			
%AANNTTCCFF	!AA	模块设置	2.1			
#AAN	> (数据)	读计数器或频率值	2.2			
~**	无回答	主机 OK	2.3			
~AA0	!AASS	读模块状态	2.4			
~AA1	!AA	复位模块状态	2.5			
~AA2	!AATT	读主机看门狗定时器	2.6			
~AA3ETT	!AA	允许/禁止主机看门狗定时器	2.7			
~AAO (名称)	!AA	设置模块名称	2.10			
\$AA2	!AATTCCFF	读配置信息	2.11			
\$AAF	!AA(数据)	读固件版本	2.18			
\$AAM	!AA (数据)	读模块名称	2.19			

数字量输入/输出,报警,事件计数器命令设置					
命令	回 答	说 明	备注		
~AAAS	!AA	设置计数器报警方式	2.8		
~AAB	!AAS	读计数器报警方式	2.9		
\$AA6N	!AA	计数器复位	2.12		
\$AA7N	!AAS	读计数器溢出标记	2.13		
\$AAA	!AAG	读门控方式	2.14		
\$AAAG	!AA	设置门控方式	2.15		
\$AAB	!AAS	读输入方式	2.16		
\$AABS	!AA	设置输入方式	2.17		
@AADI	!AAS0D00	读 D/O 和报警状态	2.20		
@AADO0D	!AA	设置 D/O 值	2.21		

RemoDAQ-8080 族模块用户手册

频率相关命令集			
命令	回答	说 明	备注
\$AAA	!AAG	读门控方式	2.14
\$AAAG	!AA	设置门控方式	2.15
\$AAB	!AAS	读输入方式	2.16
\$AABS	!AA	设置输入方式	2.17

报警方式 0 命令集			
命令	回答	说 明	备 注
@AAEAN	!AA	允许报警	2.22
@AADAN	!AA	禁止报警	2.26
@AAPA(数据)	!AA	设置计数器0报警值	2.27
@AASA (数据)	!AA	设置计数器1报警值	2.29
@AARP	!AA	读计数器 0 报警值	2.31
@AARA	!AA	读计数器1报警值	2.33

报警方式 1 命令集				
命令	回答	说 明	备注	
@AAEAT	!AA	允许报警	2.23	
@AACA	!AA	清除报警	2.24	
@AADA	!AA	禁止报警	2.25	
@AAPA(数据)	!AA	设置计数器 0 上限报警	2.28	
@AASA(数据)	!AA	设置计数器 0 的上上限报警	2.30	
@AARP	!AA	读计数器 0 的上限报警	2.32	
@AARA	!AA	读计数器 0 的上上限报警	2.34	

2.1 %AANNTTCCFF

说明:设定模块配置参数

语法: %AANNTTCCFF[CHK](CR)

% 定界符

AA 模块地址(00~FF)

NN 设定模块的新地址(00~FF)

TT 设定输入信号类型

CC 设置新的波特率

FF 状态编码

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

当改变波特率或校验和时,把 INIT*端子接地

回答: 有效命令: !AA[CHK] (CR)

无效命令: ?AA[CHK] (CR)

语法错误或通讯错误可能无法得到响应

! 有效命令的定界符

? 无效命令的定界符

AA 模块地址 (00 到 FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: %0102500600 接收: !02

将地址为01的模块的地址改为02,返回成功

2.2 #AAN

说明: 读计数值或频率值

语法: #AAN[CHK](CR)

定界符

AA 模块地址 (00~FF)

N 0: 通道 0 的计数器或频率值

1: 通道1的计数器或频率值

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答: 有效命令: >(数据)[CHK](CR)

无效命令: 无回答

没有应答: 语法错误或通讯错误或地址错

> 有效命令定界符

? 无效命令定界符

数据 8字符数据(十六进制)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: \$012 接收: !01500600

读地址为01的设置,返回成功

命令: #010 接收: !0000001E

读地址 01 的计数器 0 的值, 返回成功

RemoDAQ-8080 族模块用户手册

2.3 ~**

说明: 主机 OK

主机把"Host OK"的信息送给所有的模块

语法: ~**[CHK](CR)

~ 一个定界符

** 向所有模块发命令

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答: 无

示例:

命令: ~** 接收: 无

2.4 ~AA0

说明: 读模块的状态。如果主看门狗有效并且主机看门 狗超时溢出,模块的状态位将被设置为 4。如果模 块的状态为 4,则所有的输出命令将被忽略。

语法: ~AA0[CHK](CR)

定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答: 有效命令: !AASS[CHK](CR)

无效命令: ?AA[CHK](CR)

无返回值: 语法错误或通讯错误或地址错误

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

SS Bit 0=保留 Bit 1=保留

Bit 2=0 (成功) Bit 2=1 (主机看门狗失败) [CHK]=2 个字节的校验和,如果禁止校验和→没有校验和 (CR)=0x0D

示例:

命令: \$010 接收: !0100

读地址 01 的模块状态,返回成功,说明模块 01 OK

命令: ~020 接收: !0204

模块状态为04,说明主机看门狗超时溢出

$2.5 \sim AA1$

说明:复位模块状态

语法: ~AA1[CHK](CR)

定界符

AA 模块地址 (00 到 FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答:有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

无返回值: 语法错误或通讯错误

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: ~010 接收: !0104

模块状态是 4, 主机看门狗超时溢出

$2.6 \sim AA2$

说明:读主看门狗定时器值和状态。

语法: ~AA2[CHK](CR)

~ 定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答: 有效命令: !AASTT [CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

S=0 关闭主看门狗

S=1 开启主看门狗

TT 2字符的 16 进制值,00 到 FF,单位=0.1 秒 [CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: ~012 接收: !01000 模块 01 的主看门狗定时器关闭

2.7 ~AA3ETT

说明:允许/禁止主看门狗定时器

语法: ~AA3ETT[CHK](CR)

~ 定界符

AA 模块地址(00~FF)

E 0=禁止 1=允许

TT 十六进制,00~FF。单位=0.1 秒

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA [CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: ~013000 接收: !01

禁止模块 01 主看门狗定时器, 返回成功

2.8 ~AAAS

说明: 设置计数器报警方式

语法: ~AAAS[CHK](CR)

~ 定界符

AA 模块地址 (00~FF)

S 0=报警方式 0

1=报警方式1

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: ~01A0 接收: !01

设置地址 01 模块报警方式为 0, 返回成功

命令: ~02A1 接收: !02

设置地址 02 模块报警方式为 1,返回成功

2.9 ~AAB

说明: 读计数器报警方式

语法: ~AAB[CHK](CR)

~ 定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AAS[CHK](CR)

无效命令: ?AAS[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

S 0=报警方式 0 1=报警方式 1

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: ~01B 接收: !011

读地址 01 模块报警方式, 返回为报警方式 1

命令: ~02B 接收: !020

读地址 02 模块报警方式, 返回为报警方式 0

2.10~AAO(名称)

说明: 设置模块名称

语法: ~AAO(名称)[CHK](CR)

~ 定界符

AA 模块地址(00~FF)

名称 模块名称,最大6个字符

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00 到 FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: ~0108080 接收: !01

设置地址 01 模块名称为 8080, 返回成功

命令: \$01M 接收: !018080

读地址 01 模块名称, 返回名称 8080

2.11 \$AA2

说明:读配置信息

语法: \$AA2[CHK](CR)

\$ 定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AATTCCFF[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

TT 模块的类型代码

CC 模块的波特率代码

FF 模块的数据格式

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: \$012 接收: !01500600

读地址为01的设置,返回成功

命令: \$022 接收: !02510600 读地址为 02 的设置, 返回成功

注意:如果用户使用 %AANNTTCCFF 来改变模块配置信息,新的信息代码将被立即存储到 EEPROM 中,信息代码包括模块地址,模块类型,波特率代码,校验禁止/允许代码,校准代码,上电安全值。RemoDAO-8000

EEPROM 中的数据能被读无数次,写 100,000 次,因此,用户不应该在测试中经常改变信息代码,\$AA2 命令只能用来读 EEPROM 中的数据,用户可以无限次的向 RemoDAO-8000 发送此命令。

2.12 \$AA6N

说明:复位计数器 0 或计数器 1 的值,清除溢出标记

语法: \$AA6N[CHK](CR)

\$ 定界符

AA 模块地址(00~FF)

N 0: 计数器 0

1: 计数器 1

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

- ! 有效命令定界符
- ? 无效命令定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

2.13 \$AA7N

说明:读计数器溢出标记

语法: \$AA7N[CHK](CR)

\$ 定界符

AA 模块地址(00~FF)

N 0: 计数器 0

1: 计数器 1

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答: 有效命令: !AAS[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

S 0: 没有溢出

1: 溢出

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: \$0170 接收: !011

读计数器 0 的溢出状态, 返回成功

2.14 \$AAA

说明: 读门控方式

语法: \$AAA[CHK](CR)

\$ 定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答:有效命令: !AAG[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

G = 0 门控低电平有效

=1 门控高电平有效

=2 门控始终无效

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: \$01A 接收: !010

读地址 01 的门控方式,返回为低电平输入

2.15 \$AAAG

说明:设置门控方式

语法: \$AAAG[CHK](CR)

\$ 定界符

AA 模块地址(00~FF)

G = 0 门控低电平有效

=1 门控高电平有效

=2 门控始终无效

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

 回答:
 有效命令:
 !AA[CHK](CR)

 无效命令:
 ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: \$01A0 接收: !01

设置地址 01 的门控方式为低电平有效,返回成功

2.16 \$AAB

说明: 读输入方式

语法: \$AAB(数据)[CHK](CR)

\$ 定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答:有效命令: !AAS[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

S

S	通道 0	通道1
0	非隔离	非隔离
1	隔离	隔离
2	非隔离	隔离
3	隔离	非隔离

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: \$01B 接收: !010

读地址 01 的输入方式,返回为计数器/频率通道 0 是非隔离的,通道 1 是非隔离的

2.17 \$AABS

说明:设置输入方式

语法: \$AABS[CHK](CR)

\$ 定界符

AA 模块地址(00~FF)

S

S	通道 0	通道1
0	非隔离	非隔离
1	隔离	隔离
2	非隔离	隔离
3	隔离	非隔离

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: \$01B0 接收: !01

设置地址 01 的计数器/频率通道 0 是非隔离的,通道 1 是非隔离的,返回成功

2.18 \$AAF

说明:读固件版本

语法: \$AAF[CHK](CR)

\$ 定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA(数据)[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

(数据) 模块的版本

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: \$01F 接收: !01040101

读地址为01的模块版本数据,返回版本040101

命令: \$02F 接收: !02050101

读地址为02的模块版本数据,返回版本050101

2.19 \$AAM

说明: 读模块名称

语法: \$AAM[CHK](CR)

\$ 定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA(数据)[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

(数据) 模块名称

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: \$01M 接收: !018080

读地址为01的模块名称,返回名称8080

命令: \$03M 接收: !038080D

读地址为03的模块名称,返回名称8080D

2.20 @AADI

说明:读 D/O 报警状态 语法:@AADI[CHK](CR)

@ 定界符

AA 模块地址 (00~FF)

DI 读数字量 I/O 和报警状态

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答: 有效命令: !AAS0D00[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

- ! 有效命令定界符
- ? 无效命令定界符
- AA 模块地址(00~FF)
- D =0 DO0 关, DO1 关
 - =1 DO0 开, DO1 关
 - =2 DO0 关, DO1 开
 - =3 DO0 开, DO1 开
- S 报警方式 0
 - =0 计数器 0 禁止报警, 计数器 1 禁止报警
 - =1 计数器 0 允许报警, 计数器 1 禁止报警

RemoDAO-8080 族模块用户手册

- =2 计数器 0 禁止报警, 计数器 1 允许报警
- =3 计数器 0 允许报警, 计数器 1 允许报警

报警方式1

- =0 计数器 0 禁止报警
- =1 计数器 0 允许瞬间报警
- =2 计数器 0 允许锁存报警

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: @01DI 接收: !0100001

读地址为 01 D/O 状态,返回报警禁止,数字输出全部关闭

命令: @02DI 接收: !0210100

读地址为01数字I/O状态,返回瞬间报警允许

2.21 @AADO0D

说明:设置数字量输出

语法: @AADO0D[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

D =0 DO0 关, DO1 关

=1 DO0 开, DO1 关

=2 DO0 关, DO1 开

=3 DO0 开, DO1 开

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR),当报警允许时,命

今返回无效

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: @01DO00 接收: !01

设置地址为01数字输出00,返回成功

注意:如果报警允许,D/O0、D/O1 状态受模块的约束,

因此, D/O 其他命令将被忽视

- 上电值高/低立即变化
- @AADO0D 将被忽略

2.22 @AAEAN

说明: 计数器允许报警(报警方式0)

语法: @AAEAN[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

N =0 计数器 0 报警允许

=1 计数器 1 报警允许

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: @01EA0 接收: !01

设置计数器 0 允许报警,返回成功

2.23 @AAEAT

说明: 计数器允许报警(报警方式1)

语法: @AAEAT[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

T 报警类型, M=瞬间报警 L=锁存报警

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: @01EAM 接收: !01

设置地址为01瞬间报警,返回成功

命令: @02EAM 接收: !02

设置地址为02锁存报警,返回成功

注意:如果报警允许,D/O0、D/O1 状态受模块的约束,

因此,D/O 其他命令将被忽视

- 上电值高/低立即变化
- @AADO0D 将被忽略

2.24 @AACA

说明:清除锁存报警(报警方式1)

语法: @AACA[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

[CHK]=2个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: @01CA 接收: !01

清除地址 01 的锁存报警, 返回成功

2.25 @AADA

说明:禁止报警(报警方式1)

语法: @AADA[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答:有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: @01DA 接收: !01

地址为01禁止报警,返回成功

2.26 @AADAN

说明:禁止报警(报警方式0)

语法: @AADA[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

D = 0 计数器 0 报警禁止

=1 计数器1报警禁止

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

回答:有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: @01DA0 接收: !01

计数器 0 禁止报警,返回成功

命令: @02DA1 接收: !02

计数器 1 禁止报警,返回成功

2.27 @AAPA(数据)

说明:设置计数器 0 报警界限(报警方式 0)

语法: @AAPA(数据)[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

(数据) 8字符的十六进制值

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

- ! 有效命令定界符
- ? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: @01PAFFFF0000 接收: !01

设置计数器 0 报警界限为 FFFF0000, 返回成功

2.28 @AAPA (数据)

说明:设置计数器 0 上限报警(报警方式 1)

语法: @AAPA(数据)[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

(数据) 8字符的十六进制值

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

- ! 有效命令定界符
- ? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: @01PAFFFF0000 接收: !01

设置计数器 0 上限报警为 FFFF0000, 返回成功

2.29 @AASA (数据)

说明:设置计数器1报警界限(报警方式0)

语法: @AASA(数据)[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

(数据) 8字符的十六进制值

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

- ! 有效命令定界符
- ? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和(CR)=0x0D

示例:

命令: @01SAFFFF0000 接收: !01

设置计数器 1 报警界限为 FFFF0000, 返回成功

2.30 @AASA (数据)

说明:设置计数器 0 上上限报警(报警方式 1)

语法: @AASA(数据)[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

(数据) 8字符的十六进制值

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

- ! 有效命令定界符
- ? 无效命令定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: @01SAFFFF0000 接收: !01

设置计数器 0 上上限报警为 FFFF0000, 返回成功

2.31 @AARP

说明:读计数器 0 的报警界限(报警方式 0)

语法: @AARP[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA(数据)[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

数据 8字符的十六进制值

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: @01RP 接收: !01FFFF0000

读计数器 0 报警界限,返回为 FFFF0000

2.32 @AARP

说明:读计数器0的上限报警(报警方式1)

语法: @AARP[CHK](CR)

@ 定界符

AA 模块地址 (00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA(数据)[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

(数据) 8字符的十六进制值

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: @01RP 接收: !01FFFF0000

读计数器 0 上限报警, 返回为 FFFF0000

2.33 @AARA

说明:读计数器1的报警界限(报警方式0)

语法: @AARA[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA(数据)[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

(数据) 8字符的十六进制值

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: @01RA 接收: !01FFFF0000

读计数器 1 报警界限,返回为 FFFF0000

2.34 @AARA

说明:读计数器0的上上限报警(报警方式1)

语法: @AARA[CHK](CR)

@ 定界符

AA 模块地址(00~FF)

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

回答: 有效命令: !AA(数据)[CHK](CR)

无效命令: ?AA[CHK](CR)

语法错误或通讯错误可能无法得到响应

! 有效命令定界符

? 无效命令定界符

AA 模块地址 (00~FF)

(数据) 8字符的十六进制值

[CHK]=2 个字节的校验和,如果禁止校验和→没有校验和

(CR)=0x0D

示例:

命令: @01RA 接收: !01FFFF0000

读计数器 0 上上限报警,返回为 FFFF0000

3 应用注释

3.1 INIT* 端子操作原理

每个 RemoDAQ-8000 模块都有一个内置的 EEPROM,用来保存模块的配置信息。例如地址、波特率、信号类型、以及其他参数。有时,用户可能遗忘了模块的配置,因此,RemoDAQ-8000 系列有一个特殊的模式"INIT 模式",它可以帮助用户解决这一问题,"INIT 模式"下模块将被强行设置为 Address = 00,baudrate = 9600,no checksum。

要激活 INIT 模式,只需按以下方法做:

- 1. 关断模块电源
- 2. 将 INIT*端子和 GND 短接
- 3. 模块加电
- 4. 在 9600bps 的波特率下发送命令\$002(cr),此时模块将读取存储在 EEPROM 中的配置信息

3.2 D/O操作原理

- 1. 更多信息详见 1.6.3 节
- 2. RemoDAQ-8080/8080D 模块的输出在第一次加电 后将被关闭
- 3. 如果模块接收到命令@AADO, D/O 输出将被改变, 所有的D/O在接到命令@AADO前保持同样的状态
- 4. 如果主看门狗起作用,模块的超时状态位被设置为

- 04, D/O 被设置为安全值,如果主机发送命令@AADO将被模块忽略并响应回答"!"。主机发送命令~AA1 可清除模块状态到 0,此时,RemoDAQ-8080/8080D 模块可再次接收命令@AADO
- 5. 如果 D/O 输出当作报警输出,模块将自动控制开/ 关,因此,在这种情形下 @AADO 命令将被忽略